298 research outputs found

    Dephasing of a Qubit due to Quantum and Classical Noise

    Full text link
    The qubit (or a system of two quantum dots) has become a standard paradigm for studying quantum information processes. Our focus is Decoherence due to interaction of the qubit with its environment, leading to noise. We consider quantum noise generated by a dissipative quantum bath. A detailed comparative study with the results for a classical noise source such as generated by a telegraph process, enables us to set limits on the applicability of this process vis a vis its quantum counterpart, as well as lend handle on the parameters that can be tuned for analyzing decoherence. Both Ohmic and non-Ohmic dissipations are treated and appropriate limits are analyzed for facilitating comparison with the telegraph process.Comment: 12 pages, 8 figure

    Modal beam splitter:Determination of the transversal components of an electromagnetic light field

    Get PDF
    The transversal profile of beams can always be defined as a superposition of orthogonal fields, such as optical eigenmodes. Here, we describe a generic method to separate the individual components in a laser beam and map each mode onto its designated detector with low crosstalk. We demonstrate this with the decomposition into Laguerre-Gaussian beams and introduce a distribution over the integer numbers corresponding to the discrete orbital and radial momentum components of the light field. The method is based on determining an eigenmask filter transforming the incident optical eigenmodes to position eigenmodes enabling the detection of the state of the light field using single detectors while minimizing cross talk with respect to the set of filter masks considered.UK Engineering and Physical Sciences Research Council [EP/J01771X/1]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Coulomb phase shift revisited

    Full text link
    We investigate the Coulomb phase shift, and derive and analyze new and more precise analytical formulae. We consider next to leading order terms to the Stirling approximation, and show that they are important at small values of the angular momentum ll and other regimes. We employ the uniform approximation. The use of our expressions in low energy scattering of charged particles is discussed and some comparisons are made with other approximation methods.Comment: 13 pages, 5 figures, 1 tabl

    Physics of Ultra-Peripheral Nuclear Collisions

    Full text link
    Moving highly-charged ions carry strong electromagnetic fields that act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as {\it ultra-peripheral collisions} (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a γp\gamma p energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the ρ0\rho^0, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of `new physics.'Comment: 47 pages, to appear in Annual Review of Nuclear and Particle Scienc

    Lepton Scattering off Few-Nucleon Systems at Medium and High Energies

    Full text link
    The interpretation of recent Jlab experimental data on the exclusive process A(e,e'p)B off few-nucleon systems are analyzed in terms of realistic nuclear wave functions and Glauber multiple scattering theory, both in its original form and within a generalized eikonal approximation. The relevance of the exclusive process 4He(e,e'p)^3H for possible investigations of QCD effects is illustrated.Comment: 6 pages, 3 figures. Plenary talk given by C. Ciofi degli Atti at the XX European Conference "Few Body Problems in Physics", Pisa, Italy, September 2007. To appear in Few-Body System

    Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser

    Full text link
    The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered x-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including Compton scattering, fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second-order paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations

    Full quantum distribution of contrast in interference experiments between interacting one dimensional Bose liquids

    Full text link
    We analyze interference experiments for a pair of independent one dimensional condensates of interacting bosonic atoms at zero temperature. We show that the distribution function of fringe amplitudes contains non-trivial information about non-local correlations within individual condensates and can be calculated explicitly using methods of conformal field theory. We point out interesting relations between these distribution functions, the partition function for a quantum impurity in a one-dimensional Luttinger liquid, and transfer matrices of conformal field theories. We demonstrate the connection between interference experiments in cold atoms and a variety of statistical models ranging from stochastic growth models to two dimensional quantum gravity. Such connection can be used to design a quantum simulator of unusual two-dimensional models described by nonunitary conformal field theories with negative central charges.Comment: 9 pages, 5 figures; Accepted for publication in Nature Physic

    Photon statistics of a random laser

    Get PDF
    A general relationship is presented between the statistics of thermal radiation from a random medium and its scattering matrix S. Familiar results for black-body radiation are recovered in the limit S to 0. The mean photocount is proportional to the trace of 1-SS^dagger, in accordance with Kirchhoff's law relating emissivity and absorptivity. Higher moments of the photocount distribution are related to traces of powers of 1-SS^dagger, a generalization of Kirchhoff's law. The theory can be applied to a random amplifying medium (or "random laser") below the laser threshold, by evaluating the Bose-Einstein function at a negative temperature. Anomalously large fluctuations are predicted in the photocount upon approaching the laser threshold, as a consequence of overlapping cavity modes with a broad distribution of spectral widths.Comment: 26 pages, including 9 figure

    Observation of a red-blue detuning asymmetry in matter-wave superradiance

    Full text link
    We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned light, the familiar distinctive multi-order, matter-wave scattering pattern is clearly visible, whereas with blue-detuned light superradiance is strongly suppressed. In the limit of a dilute atomic gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let

    Quantum nature of laser light

    Get PDF
    All compositions of a mixed-state density operator are equivalent for the prediction of the probabilities of future outcomes of measurements. For retrodiction, however, this is not the case. The retrodictive formalism of quantum mechanics provides a criterion for deciding that some compositions are fictional. Fictional compositions do not contain preparation device operators, that is operators corresponding to states that could have been prepared. We apply this to Molmer's controversial conjecture that optical coherences in laser light are a fiction and find agreement with his conjecture. We generalise Molmer's derivation of the interference between two lasers to avoid the use of any fictional states. We also examine another possible method for discriminating between conerent states and photon number states in laser light and find that it does not work, with the equivalence for prediction saved by entanglement
    corecore